Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (2024)

Engage NY Eureka Math 4th Grade Module 4 Lesson 4 Answer Key

Eureka Math Grade 4 Module 4 Lesson 4 Problem Set Answer Key

Question 1.
On each object, trace at least one pair of lines that appear to be parallel.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (1)
Answer:
As the parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (2)
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So in the above image, we have traced the parallel lines to all the images.

Question 2.
How do you know if two lines are parallel?
Answer:
To know the lines are parallel or not, we will see that which are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So in the above image, we have traced the parallel lines to all the images.

Question 3.
In the square and triangular grids below, use the given segments in each grid to draw a segment that is parallel using a straightedge.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (3)
Answer:
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (4)

The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So in the above image, we have traced the parallel lines to all the images.

Question 4.
Determine which of the following figures have sides that are parallel by using a straightedge and the right angle template that you created. Circle the letter of the shapes that have at least one pair of parallel sides. Mark each pair of parallel sides with arrowheads, and then identify the parallel sides with a statement modeled after the one in 4(a).
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (5)
Answer:
The parallel lines in image a are AB and CD and AC and BD.
The parallel lines in image b are HI and JK.
There are no parallel lines in image c.
There are no parallel lines in image d.
The parallel lines in the image e are ZF and AW, ZA and FW.
There are no parallel lines in image f.
The parallel lines in the image g are TO and RQ, ST and QP, RS and OP.
The parallel lines in the image h are YX and VW.

Explanation:
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (6)

The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So the parallel lines in the image we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are AB and CD and AC and BD. In image b we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are HI and JK. In image c we can see that there are no set of two lines that are on the same plane are equal at some distance but never meet each other so there are no parallel lines. In image d we can see that there no set of two lines that are on the same plane that are equal at some distance but never meet each other so there no parallel lines. In image e we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are ZF and AW, ZA and FW. In image f we can see that there are no set of two lines that are on the same plane are equal at some distance but never meet each other so there will be no parallel lines. In image g we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are TO and RQ, ST and QP, RS and OP. In image h we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the YX and VW.

Question 5.
True or false? A triangle cannot have sides that are parallel. Explain your thinking.
Answer:
Yes, it is true. As the triangle does not have a set of two lines that are on the same plane are equal at some distance but never meet each other.

Question 6.
Explain why \(\overline{A B}\) and \(\overline{C D}\) are parallel, but \(\overline{E F}\) and \(\overline{G H}\) are not.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (7)
Answer:
Here in the above image, we can see that AB and CD are parallel because there are set of two lines that are on the same plane are equal at some distance but never meet each other. And we did not see the set of two lines that are on the same plane are equal at some distance but never meet each other in EF and Gh so those lines are not parallel.

Question 7.
Draw a line using your straightedge. Now, use your right angle template and straightedge to construct a line parallel to the first line you drew.
Answer:
As the parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
As the parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. Here, we will draw a line using a straightedge, and then we will use the right-angle template and straightedge to construct a parallel line. So the image will be
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (8)

Eureka Math Grade 4 Module 4 Lesson 4 Exit Ticket Answer Key

Look at the following pairs of lines. Identify if they are parallel, perpendicular, or intersecting.

Question 1.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (9)
____________________
Answer:
The lines are parallel.

Explanation:
In the above image, there are set of two lines that are on the same plane are equal at some distance but never meet each other. So the lines are parallel lines.

Question 2.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (10)
____________________
Answer:
The lines are perpendicular to each other.

Explanation:
When two distinct lines intersect each other at 90 degrees those lines are called perpendicular lines. A right angle is also known as perpendicular lines. In the above images, we have traced out the perpendicular lines and the properties of perpendicular lines are these lines should always intersect at right angles. So if the two lines are perpendicular to the same line then those lines will be parallel to each other and will never intersect. So those lines are perpendicular.

Question 3.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (11)
____________________
Answer:
The lines are intersecting each other.

Explanation:
In the above image, we can see that two lines intersect each other, as the two lines cross in a plane and share a common point that exists on all the intersecting lines. So the lines are intersecting each other.

Question 4.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (12)
____________________
Answer:
The lines are parallel to each other.

Explanation:
In the above image, there are set of two lines that are on the same plane are equal at some distance but never meet each other. So the lines are parallel lines.

Eureka Math Grade 4 Module 4 Lesson 4 Homework Answer Key

Question 1.
On each object, trace at least one pair of lines that appear to be parallel.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (13)
Answer:
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (14)
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So in the above image, we have traced the parallel lines to all the images.

Question 2.
How do you know if two lines are parallel?
Answer:
We know that the two lines are parallel by seeing that the set of two lines that are on the same plane are equal at some distance but never meet each other.

Question 3.
In the square and triangular grids below, use the given segments in each grid to draw a segment that is parallel using a straightedge.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (15)
Answer:
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So in the above image, we have traced the parallel lines to all the images.

Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (16)

Question 4.
Determine which of the following figures have sides that are parallel by using a straightedge and the right angle template that you created. Circle the letter of the shapes that have at least one pair of parallel sides. Mark each pair of parallel sides with arrows, and then identify the parallel sides with a statement modeled after the one in 4(a).
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (17)
Answer:
The parallel lines in image a are AC and BD.
The parallel lines in image b are HI and JK.
There are no parallel lines in image c.
There are no parallel lines in image d.
There are no parallel lines in image e.
The parallel lines in the image f are OP and NM.
The parallel lines in the image g are ST and QP.
The parallel lines in the image h are UT and ZY.

Explanation:
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (18)

The parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. These parallel lines are seen in our real-life are zebra crossing, railway tracks, staircases, etc. So the parallel lines in the image we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are AC and BD. In image b we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are HI and JK. In image c we can see that there are no set of two lines that are on the same plane are equal at some distance but never meet each other so there are no parallel lines. In image d we can see that there no set of two lines that are on the same plane that are equal at some distance but never meet each other so there no parallel lines. In image e we can see that there are no set of two lines that are on the same plane are equal at some distance but never meet each other so there are no parallel lines. In image f we can see that there are no set of two lines that are on the same plane are equal at some distance but never meet each other so there will be no parallel lines. In image g we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the parallel lines are ST and QP. In image h we can see the set of two lines that are on the same plane are equal at some distance but never meet each other so the UT and ZY.

Question 5.
True or false? All shapes with a right angle have sides that are parallel. Explain your thinking.
Answer:
No, it’s not true. As the right angle does not have a set of two lines that are on the same plane are equal at some distance but never meet each other. So it is false.

Question 6.
Explain why \(\overline{A B}\) and \(\overline{C D}\) are parallel, but \(\overline{E F}\) and \(\overline{G H}\) are not.
Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (19)
Answer:
In the above image, we can see that AB and CD lines are parallel lines, as if we extend the lines they will never intersect. And the lines EF and GH are not parallel as if we extend those lines they will intersect, so these lines are not parallel.

Question 7.
Draw a line using your straightedge. Now, use your right angle template and straightedge to construct a line parallel to the first line you drew.
Answer:
As the parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other.

Explanation:
As the parallel lines are defined as the set of two lines that are on the same plane are equal at some distance but never meet each other. Here, we will draw a line using a straightedge, and then we will use the right-angle template and straightedge to construct a parallel line. So the image will be

Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (20)

Eureka Math Grade 4 Module 4 Lesson 4 Answer Key (2024)

FAQs

What grade does Eureka math go to? ›

Eureka Math offers a full complement of Prekindergarten through Grade 12 print materials including Teacher Editions, student workbooks, and more. Spanish language editions are available for Grades K–8.

What are the four core components of a Eureka Math TEKS lesson? ›

A typical Eureka lesson is comprised of four critical components: fluency practice, concept development (including a problem set), application problem, and student debrief (including the Exit Ticket).

What is mathematics for students grade 4? ›

In fourth grade, math instruction should focus on number theory and systems, algebraic thinking, geometrical figures and objects, measurement of length, weight, capacity, time, and temperature, and data analysis and probability.

What is the purpose of the concept development in Eureka math? ›

The concept development is generally comprised of carefully sequenced problems centered within a specific topic to begin developing mastery via gradual increases in complexity.

What is the hardest math grade? ›

The hardest math class you can take in high school is typically AP Calculus BC or IB Math HL. These courses cover a wide range of advanced mathematical concepts, including calculus, trigonometry, and statistics.

Is Eureka Math no longer free? ›

Anyone can download the entire PK–12 Eureka Math curriculum, along with a variety of instructional materials and support resources, for free. Some materials, such as our printed workbooks, Eureka Digital Suite, Affirm, Eureka Math Equip, and Eureka Math in Sync must be purchased.

Is Grade 4 Maths ok? ›

As a rule of thumb, most employers look for a grade of C/4 or above in the core subjects of English and Maths.

Is 4th grade math hard? ›

There's a lot of math to learn in fourth grade, and it can take extra practice. Say that it's OK if learning math feels tough. If you ever struggled with math, be open about that. It helps kids understand that they're not the only ones who struggle.

How old are you in 4th grade? ›

It is the fourth year of primary school. Children in fourth grade are usually 9–10 years old.

What makes Eureka Math different? ›

Thoughtfully constructed and designed like a story, Eureka Math is meticulously coherent, with an intense focus on key concepts that layer over time, creating enduring knowledge. Students gain a complete body of math knowledge, not just a discrete set of skills.

What are the goals of Eureka Math? ›

Eureka Math is designed to support students in gaining a solid understanding of concepts, a high degree of procedural skill and fluency, and the ability to apply math to solve problems in and outside the classroom. There is also an intentional coherence linking topics and thinking across grades.

Who is the father of math Eureka? ›

Here's a closer look into this sudden discovery (the “Eureka!” moment): The famous Greek mathematician, physicist, and astronomer, Archimedes was born in 287 BC in Syracuse, a Greek colony in Sicily (an island now part of Italy).

What is the hardest math in 5th grade? ›

Some of the hardest math problems for fifth graders involve multiplying: multiplying using square models, multiplying fractions and whole numbers using expanded form, and multiplying fractions using number lines.

What math is 8th grade level? ›

Eighth-grade math is typically a course in pre-algebra to help prepare students for high school algebra.

What math level is 5th grade? ›

In fifth grade, students focus on adding, subtracting, multiplying, and dividing whole numbers, fractions, and decimals. Your kid will become fluent with computing these types of numbers and understanding the relationship between them. Students should also be able to use these numbers in real-world scenarios.

What grade level is go math for? ›

Go Math! (K-6) on Ed is an easy-to-implement core curriculum with an effective instructional approach that includes robust differentiation and assessment resources that engage all levels of learners and support all levels of teachers, from novice to master.

Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 5839

Rating: 5 / 5 (60 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.